
Z File System (ZFS) Specifications (v 00.01)

Arsalan Zaidi

11th August 2001

Abstract

This is the initial draft of the specification for a new distributed/network
file system. The information presented here isvery tentative and subject
to change without notice. Although no knowledge of CMU’s CODA is re-
quired, it may be helpful in understanding some of the ideas behind ZFS.

Introduction

Overview

ZFS is anetwork of automatically replicating file servers. The focus of the
system is on scalability, security and usability. All data servers in ZFS hold (or
have the ability to hold) identical copies of a master file system. For example, if
a file named /home/azaidi/specs.txt exists on one data server, it can be accessed
from a suitable authorised client from any other data server. The data servers don’t
nessasarily hold the entire file system, neither is it guaranteed that they will hold
the most current version of the file in question, but they can access and retrieve
the most current version of any file on the system automatically. Like CODA1 (a
file system developed at CMU and the source of many of the ideas behind ZFS),
granularity is generally at the file level. Clients request files, cache them at their
end and perform operations upon them. Any changes made to the file are local.

1The CODA home page. http://www.coda.cs.cmu.edu
Introductory Document. http://www.coda.cs.cmu.edu/ljpaper/lj.htm

1



Once the file is closed on the local machine, it is sent back to the data server for
re-integration.

ZFS isverystrong on security. Authentication is achieved using username/passwords
(for the clients) and certificates (for the servers), and all data isalwaysencrypted.
SSL is used by every component in the system. In addition, ZFS tries to maximise
bandwidth utilisation by both compressing data when ever it can and also by us-
ing anrsync2 based protocol. Data compression can be turned off, if desired, to
conserve CPU cycles3. Encryption is mandatory.

One of the aims of the project is to make ZFS as stable, secure and reliable as
possible, both in it’s design and implementation. In addition, the system has been
designed from the ground up keeping scalability in mind. Ease of administration
was also kept in mind and almost every aspect of a ZFS network can be adminis-
tered from a central location.

The implementation will largely use off the shelf components (both hardware and
software) and an effort as been made to make sure that a network can be set up
quickly and cheaply. Though not required, it should be possible to increase perfor-
mance if specialised hardware (like hardware load balancers/ switches) are used.

Applications

While conceptulising the design, some possible scenarios were kept in mind.

1. A large global system of heavily accessed servers. E.g. Red Hat’s distribu-
tion mirroring system.

2. A large University/Corporation.
2http://rsync.samba.org/
3An assumption of the design is that network bandwidth will always be more valuable than

CPU cycles.

2



ZFS would be ideal for a large mirroring network. All one would have to do is
update the files on one server, and it would automatically propagate itself to every
other data server on the network that services a request for it. This means that the
file will only be sent across the network to a data server if some client requests it
from that server. Since files are only copied when requested, network bandwidth is
conserved and so is data server disk space. At the same time, since you only have
to upload a file to any one server, administration and server replication become
trivial. The Data servers could be globally distributed, with the various subsidiary
FTP servers logging in as ZFS clients.

In addition, ZFS would be a good solution for a university with a large number
of computers. The filesystem may be mounted on a large number of thin client
machines and users will be able to log in and use any machine as if it were their
own. Additionally, it would be great for thin wireless clients, web tablets and
PDA’s. If the building has some kind of wireless setup, then thin clients with

3



very little storage can access vast amounts of information off their ZFS mounted
filesystems. It would also be great for corporations which require their workers to
use portable computers away from the office. One of ZFS’s features isautomatic
integrationanddisconnected operation, which means that any files changed while
the system is disconnected from the network will be automatically uploaded once
the network connection is re-established. In addition, files can behoarded4 be-
fore disconnection so local cached copies exist. If proper care is taken, the user
shouldn’t notice any difference between connected and disconnected operation.

ZFS could theoretically replace FTP too. It’s more secure by design and integrates
the remote file system with the local one, making file transfers and management
much more intuitive. Now all you need to do to update your website is simple
mount the remote system andcp your files to it.

System Components

Client: A Client is any computer running the ZFS client module5. The client
module will be transparent to the user. All one has to do is mount the
appropriate ZFS server to a sub-directory and then cd to it to access
it. There can be any number of clients, all of whom mount the remote
partition under /mnt/zfs or some other suitable mount point.

Data Server:A data server is a computer/process that handles the actual storage of
the different files on the ZFS file system. Clients talk to data servers
and request files from them. There must be one or more data servers

Directory Server:The directory server handles the data look up issues. It keeps a
track of the location of all the files on the system. Directory servers
act like giant look up tables and are accessed by the data servers.
There can be only one conceptual directory server, although the load
may be balanced across several physical machines.

Admin Server:The admin server carries out various sundry tasks. It asks like a
load balancer and allocates different data servers to different clients
depending on various parameters like location and server load. It

4Automatic reintegration, disconnected operations and hoarding are concepts borrowed from
CODA.

5The word ’client’ throughout this document, refers to the software component running on the
user’s system andnot the user himself.

4



also monitors data servers and remotely restarts them if they fail or if
their config files need to be updated. In addition, it may also main-
tain logs and load statistics, a central repository for all authentication
information, the time server which syncronises all the machines (for
accurate timestamps) and software to handle the doling out of certifi-
cates. There is only one conceptual admin server, although the load
may be balanced across several physical machines.

History

The author of this document started to think about implementing a new distributed
file system while looking for ideas for a class assignment. Finding that people
were widely dissatisfied with NFS, he looked around for alternatives and was
pointed at AFS and CODA. Having read all he could find about CODA, he was
rather impressed by it, but could immediately think of various ways to improve
upon it.

ZFS was initially going to be ’CODA with Write Once, implemented cleanly’, but
one thing lead to another and ZFS and CODA are now quite distinct. The reader
is encouraged to learn about CODA as ZFS borrows many concepts from it.

Why do we need another DFS ?

There are already several distributed file systems about6. However, none seem to
be all that ZFS is. NFS is quite remarkable and completely transparent. However,
it stateless nature means that scalability is an issue. CODA, with it’s broadcast
writes is not suitable in many situations. In addition, if the data distributed by the
file system is going to travel over public networks, both security and bandwidth
efficiency become issues. ZFS is an attempt to bring together the best out there
and come up with a solution which better fits todays requirements and which can
work reliably over the Internet.

6A list of some popular distributed file systems and informa-
tion abut them may be found in a useful paper available online at
http://www.extremelinux.org/activities/usenix99/docs/braam/braam.html

5



License

It is the authors intent to release his implementation of this specification under the
Apache License7.

The License for this document is based on the IETF license.

Copyright (C) Arsalan Zaidi (2001). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its imple-
mentation may be prepared, copied, published and distributed, in whole or in part,
without restriction of any kind, provided that the above copyright notice and this
paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copy-
right notice, except as needed for the purpose of translation into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by
Arsalan Zaidi or his successors or assigns.

This document and the information contained herein is provided on an "AS IS"
basis and Arsalan Zaidi DISCLAIMS ALL WARRANTIES, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS
OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Basic Design

Some Design Decisions

Priorities

1. Scalability : This is of utmost concern. The system must be able to scale
to accommodate a large number of users. It must be able to distribute load
cleanly and in an optimum manner.

7Interested parties may visit www.opensource.org for the text of this and various other Open
Source licenses.

6



2. Performance : The file system must be snappy and should use every trick in
the book to increase file transfer speed.

3. Integrity : The system must perform reliably in less than ideal conditions
and under heavy load. It must be able to withstand partial network outages
and partitions.

4. Portability : The system should not discriminate on the basis of the client’s
OS. In addition, it should allow the implementors to run it on any platform
they choose; within limits.

5. Adminsterability : The entire system must be easy to administer and setup.

Implementation Language

There were only three serious candidates.

1. C

2. C++

3. Java

The author agonised for weeks over this decision and finally choose Java.

Although both C and C++ are useful languages to work with, the clincher was
the inherent portability of Java. Writing a large project in a non-OO language is
harder than writing it in one that has inherent support for OOP. However, C++ lost
out because writing portable multi-threaded code in C++ is a decidedly non-trivial
task.8 Java shines here, because it is easy to create multi-threaded applications in
it. In addition, the language is inherently simpler than C++ and has less hidden
pitfalls.

However, Java too has it’s warts. It is much slower than C++ and harder to opti-
mise. Despite the marketing hype, itis possible to run into portability snags. In
addition, the language is under the complete control of one corporation and is still
not entirely standardised. There aren’t as many free tools available for Java, or

8Interested readers may read the C++ programming guidelines for Mozilla (www.mozilla.org)
for further details on just how restricted programming becomes if one wants to stay portable.

7



as many free libraries available either. Besides, Java seems to attract non-system
programmers and thus finding people to help with the project may be harder than
if the implementation language were to be C++ or (even more so) C. Both these
languages are widely understood and used by serious software hackers, with C
being pretty much thelingua francaof the computing world.

Although the authors implementation will be written in Java, there is nothing
about ZFS which is language specific. In fact, the client side software will have to
be written in C because of its close interaction with the client operating system.

Plain TCP/IP vs RPC

Implementing a protocol using simple send() and recv() offers a lot of control.
However, it is tedious and error prone. It would be far cleaner to use a well defined
interface, which is what RPC gives us. There may be some loss in efficiency, but
the gains are worth it.

CORBA vs RPC

It initially seemed that the CORBA ORB would fill the role of the Admin server
quite nicely. Unfortunately, for the ORB to be useful, special non-standard ex-
tensions would have to be written and the time spent in extending a standard in a
non-standard way would not be worth the effort. There would be no gain and thus
the idea was abandoned.

XML-RPC vs Other implementations

XML-RPC is a simple RPC implementation. It uses XML to format the data
and can be used from behind proxies and firewalls without any change to their
configuration. Although heavier than many other forms of RPC, it is simple to
use and it’s ability to tunnel through proxies will prove invaluable for clients on
corporate networks.

Component Philosophy

As far as possible in the design and implementation of ZFS, the author intends
to use ready made libraries and systems. This is to speed up the process of de-

8



velopment and simplify it. In addition, it lowers the learning curve required to
understand ZFS and makes is easier to maintain. Responsibilities are effectively
farmed out. For example, SSL is used throughout for security and XML-RPC is
used for communication. Another example is that ZFS does not define any file
system to use on the Data Servers, but it is expected that some sort of Journaling
File System9 will be used.

A Walk Through of the System

One way to explain how ZFS works would be to provide a bit of a virtual walk,
though a series of interactions with the system.

Mordred wishes to access his system and edit some files related to his upcoming
project. He sites down on his home pc and boots it up into the Linux partition.
He then mounts the ZFS volume under /mnt/zfs and gets to work. The ZFS client
software is present on the system as a kernel module plus a user level manager.
When the ZFS volume is mounted, it checks the local configuration files and re-
trieves the name of the Admin Server. It then connects to the Admin server and
give it its location10. The admin server finds a data server in it’s database which
is closest to Mordred. In addition, it uses other statistics present with it to find
the server which is the most lightly loaded. It returns the name of this data server
to Mordred’s ZFS client. The client now connects to the data server and logs in
securely. It also sets up all encryption information using SSL.

Mordred now starts up Emacs and opens up the file he’s interested in; /mnt/zfs/home/
mordred/project.txt. When the open() function is called, the ZFS client first checks
the local database (nothing more than a glorified look up table) for the file. If the
file exists, it then checks the status of the callbacks and see’s if the callback on the
file has expired. If it hasn’t, that means that the file in the local data cache is the
freshest. It opens up the file and returns a handle to Emacs.

If on the other hand, the file is not available or if the callback has expired (in-
dicating that this copy is no longer the freshest), the client connects to the data
server and requests the file. Files are identified using their full path and name. If
the freshest version of project.txt is available on the data server (i.e. its callback

9For example, Reiser FS or EXT3 on Linux
10Optional and entered by the user in the appropriate .conf file. The software will use BGP to

find the most optimum Data server for the client and the client locational information is just a hint.
However, this is configureable.

9



promise has not been revoked by the directory server), then it returns the file (after
compressing and encrypting it) to the client11. The client copies the file into the
data cache (a large temporary work area on the local disk) after unencrypting and
uncompressing it and returns a handle pointing to it to Emacs. A callback with
the server is automatically set up. If there are any changes made to the file on the
ZFS network, then the callback will expire and the client will know that the copy
in its cache is no longer the freshest. It will then retrieve the freshest copy when
the user demands it. In addition, an entry is made in the local database listing the
file name and the timestamp on the file. The timestamp information comes from
the server.

What if the file wasnot available on the data server? Or what if the data server
knew the file it held wasnot the freshest copy? In that case, the ZFS data server
would contact the Directory Server and give it the full path and name of the file the
client requested (information about which directory server to access is retrieved
from the admin servers on startup). The directory servers contain a large tree
which listsall the file available of the ZFS network. It also lists the names of
the data servers which contain the freshest copy of each file. The directory server
will look up its file tree and return the names of a maximum of four servers which
hold the freshest copy of the file. If there is no mention of the requested file in
the Dir server, then it will return a ’file not found’ error12. The data server now
directly connects to the first of the data servers returned by the directory server and
requests the file (after authentication and encryption ). Once the retrieval is over,
it starts a new thread to send the file over to the client and concurrently connects to
the directory server saying it has the freshest copy of project.txt13. The directory
server checks the timestamp (retrieved along with the file by the Data server14 and
sent by it to the directory server) and if it’s identical to the ones already in the tree,
it adds the server to it’s list of servers which have the freshest copy of project.txt.

11The client can either ask for the entire file, or use the rsync algorithm to get only those parts
of the file which have changed. The former method will be used when the file is being downloaded
for the first time.

12At this point, if the Data server itself has a copy of the file available with it, it should add it to
the Directory in the usual manner.

13The reason a query about a file doesn’t automatically result in an addition of the querying
server to the Directory as a carrier of the latest copy, is because a query about a file may not
always result in it’s download.

14In this situation, the Data server acts just like a normal client. It copies the timestamp from
the source Data server and stores it in a database on it’s system. The only time a Data server uses a
timestamp from it’s own clock is when it’s notifying the Directory server about a new or modified
file.

10



A callback is automatically established. Now if a new copy of project.txt appears
on any other data server, the Directory server will have to be told about it. It will
update its tree and break all its callbacks for that file. Our Data server will then
automatically come to know that its copy cached of project.txt is no longer the
freshest.

The reason both uploading the file to the client and updating the directory server
proceed concurrently is as follows:-

If the file in question is a log file being updated rapidly, like once every second or
so, then by the time the data server downloads it, a new copy of the file would have
appeared on the network. When our data server then tries to establish a callback
using the (now invalidated and expired) timestamp, it would be told it does not
have the freshest copy. It would try once more to download the freshest copy and
the cycle would continue. By sending the file over concurrently, the client gets a
copy of the rapidly changing file as it wasat that moment,when the data server
tries to establish a callback, it is rejected. Now thenext timesomeone tries to
access the same file, the data server will re-fetch it. Notice that we’re not going
into a loop here like we would have otherwise.

So anyway, the data server retrieves the file and forwards it to the client. Mordred
continues on his merry way, making whatever changes he desires. Once he’d done,
he saves the file and closes it. On the close, the ZFS client takes the newly updated
project.txt and (after compressing and encrypting it) places it in thereintegration
que. Another thread scans the que and when it finds a file there, it tries to copy
it back to the Data server. If it can’t do this, because the network is down for
example, it backs off for a bit, and then tries again later. In addition, it tries to
optimise the que by making sure that there’s only one version of a file there if
Mordred opened and closed the file many times, making changes every time. In
addition, the rsync algorithm is used to drastically speed up the upload of the file.

When the file is finally uploaded to the data server, it contacts the directory server
like before and informs it that it has the freshest copy of project.txt. The timestamp
on the project.txt file (added by the Data server) is the freshest, so all other data
server names are purged from the list and their callbacks for this file are killed
and the name of our data server is added in and a callback established. Since it
is assured that our data server has the freshest copy of project.txt, it now ends the
transaction by establishing a callback promise with the client.

11



Advantages

1. Faster than CODA on hardware which doesn’t support broadcasts, because
writes are one to one.

2. Able to work on networks which do not support hardware level broadcasts
(except in the special case of the internal network when there are multiple
Directory servers).

3. The clients are not relied upon to update all the data servers, just the one
they’re connected to.

4. Optimised for dial-up or slow links (Rsync updates/Aggressive compres-
sion).

5. Clients can work from behind restrictive Proxies and Firewalls.

6. Client caching and disconnected operation (data hoarding).

7. Strong security and authentication (both data streams and data in the cache
are encrypted).

8. Fault tolerant.

9. Load Balanced.

10. Scalable.

11. Easy to administer.

12. Written in Java for portability.

13. Open Source.

Disadvantages

1. The implementation is complex

2. Untested and unproven compared to other products already available.

3. The centralised nature of the system, revolving around the Directory server
makes it vulnerable to network partitions and attacks on the Directory server.

12



Overview

The Directory Server

The Directory Server is usually made up of a bank of machines. It keeps an
up to date version of the file system tree in its memory and makes and breaks
callbacks with the data servers. It is the hub of the system and the most sensitive
and complicated part of the the entire network.

The reason for introducing the concept of a Directory server, even though it re-
duces scalability and increases complexity is to increase the speed of file retrieval,
eliminate broadcast writes to servers and paradoxically, increase reliability. A file
system which emulates the Unix paradigm cannot operate on the P2P model15. It
is essential that the location of each file be known exactly.

The Data Server

The Data Server’s job is relatively simple. All it has to do is service requests
and send data over to the requesting client. It also has to keep in touch with the
Directory and Admin servers.

The Admin Server

The Admin server handles various sundry tasks. It verifies certificates, redirects
clients, holds the config files for Data servers, monitors the health of the data
servers and hosts the network’s NTP server.

The Client

The Client is made up of two components. There’s the kernel module and a more
portable user-level module. As much work as possible will be done in user space
for reasons of safety and portability. The client’s job is quite complex. This is
because not only must is manage the sending and receiving of files, it must also
incorporate various techniques to optimise the entire process.

15For an example of a peer to peer network, see www.freenet.org

13



Clients save data to an integration que, from where the files are trickled to the data
servers for updation. Clients must detect network conditions and react accord-
ingly.

Dealing with Network Outages and Partitions

The entire FS system must be able to deal gracefully with network partitions and
outages. On a global network like the internet with an 20% downtime16, you
have to prepare for the inevitable. Here’s how each component reacts to network
partitions and partial reachability.

Admin Server

If the Admin server is unreachable, clients will be unable to discover the address of
Data servers and thus will find it impossible to access the ZFS network. However,
it is possible for a client to cache the address of the Data server used during its
last session and use it again. That this will always work is not guaranteed. If
the certificate server is also hosted on the Admin server, it will not be possible to
authenticate any of the servers.

In addition, newly rebooted Data servers will not be able to go online because they
depend on the Admin server to provide them with the address of the Directory
server. A newly restarted ZFS system will find that its Directory servers cannot
build up a file system snapshot because they do not know the addresses of the Data
servers.

However, if the Admin server goes offline for a short time after the system is
already setup, currently connected Clients/Data servers/Directory servers will not
be affected.

Directory server

If the Directory server is unreachable, then Data servers and their clients will be
directly affected. Data servers can react in two possible ways.

16???Missing Reference???

14



1. They can continue to serve files cached on their disks, with no guarantee of
freshness. Requests for files they do not hold will fail.

2. They can immediately stop serving files and respond with a failure code to
every request.

The reaction of the Data servers is configurable.

Data server

If a Data server is unreachable, the Admin server will soon discover the fact and
stop redirecting clients to it. Currently connected clients will automatically be
disconnected and will (after several retries) contact the Admin server, which will
redirect them to another Data server. File uploads and downloads in progress can
be restarted on the new server.

Clients which had just finished uploading a file will proceed as explained on
page22under Possible Problems.

Client

If a client is unreachable, the Data server simply closes its connection to it.

Detailed information about the different components

The Admin Server

The Admin server carries out various tasks.

1. It redirects clients to the nearest, most lightly loaded Data server. To do this,
it uses BGP17 and location information sent in by the client.

2. It monitors the health of the Data servers and remotely restarts them if they
fail. In case that is not possible, it alert the administers.

17Super Sparrow. http://supersparrow.sourceforge.net/ss-0.0.0/index.html

15



3. It monitors the load on the Data servers and uses information returned by
them to calculate which Data server should receive the next batch of clients.

4. It holds the Data server configuration files. The administrators need only
make a change on the files held on the Admin server and the information
will be automatically sent to the Data servers. In addition, the administrators
can stop, start and restart servers, monitor their health, and change almost
every variable that affects them from the Admin server console.

5. [Optional] It hosts a Certificate server which helps clients authenticate Data
Servers.

6. [Optional] It hosts an NTP server which allows the networks servers to sync
up their time.

Admin servers may be load balanced or backed up18 in anyway the administrators
think nessasary.

The Directory Server

The Directory server handles the central file system tree. It knows where each
and every file on the system is stored. Data servers are in constant touch with the
Directory server and query it for this information. They also update its tree by
sending in information when a file is changed or added.

Setup:

The Directory Server is actually made up of a bank of several machines19. Each
machine has a minimum of two network cards, with one network card on a net-
work which supports hardware level broadcasts. All connections from the outside
world come in through the other network card. These connections can be load bal-
anced using a load balancing switch or a DNS server. The second network card
is connected to an fast internal network which links up all the Directory servers.
This should be something like a 100MBps or Gigabit Ethernet network20. Here’s
how the system works.

18UltraMonkey. http://ultramonkey.sourceforge.net
19Although it is possible to run a ZFS network with just one machine.
20The machines should be wired up using a bus topology. This is one place where the brittleness

of such a network is actually useful. No matter where the network breaks, all the Directory servers
will stop working; immediately signalling a problem. This reduces to some extent fragmentation
due to netowrk partitions.

16



When ever there is anupdate request, the Directory server sends a broadcast
(after conducting sanity checks) on the internal network informing others of the
update. It itself picks up the data for the update from the wire; it doesn’t add it
directly21. Each update packet is numbered with a unique, incrementing counter.
This counter is picked up from an external, shared resource22. The number helps
in spotting missing updates.

Directory servers are required to keep track of at least the last 50 updates. Ev-
ery time a new update arrives, the Directory server checks to see if the counter
number is contiguous. If it’s a duplicate update, it is silently dropped. If it is non-
contiguous, but less than 5 increments away from the last update, it is stored and
the Directory server waits for the rest to come in. If the counter is greater than 5
increments out of sync or the intermediate updates don’t come in, the Directory
server will contact the Boss23 Directory server and ask for the lastn updates and
apply those to it’s tree. If the Boss server itself lacks those updates or if it itself
finds that it has missed some updates, a new election is called for where Directory
servers without syncronised trees are not allowed to participate. The new Boss is
then asked for the updates. In case all the directory servers are out of sync, manual
intervention is required24.

When a new Directory server is added to the pool, it asks the Boss server for the
entire tree. While downloading the tree, it keeps track of updates and applies these
to the tree once the download is over. It is now ready to honour updates.

Requestsfor information can be answered by any up to date Directory server.
Requests require no traffic on the internal network.

Both requests and updates are load balanced by placing a software or hardware
load balancing solution in front of the Directory servers. One simple way to load
balance is to modulus the IP address as an integer with the number of the Directory
server.

Note that implementors are free to add more network cards and stripe data across
these.

21This is an implementation detail. By cutting functionality into two logically different units,
the code will be more modular. Implementors are free to ignore this advice.

22A seperate counter dispensing server, the Boss server which is elected using standard election
protocols. Or more simply, a file with a counter in it which is shared using NFS. Each Directory
server locks the file, reads in the counter, increments it and then unlocks the file.

23The elected leader of the pack. In addition to managing the counter, it also monitors the health
of the other servers.

24Most likely a complete reboot of the ZFS system.

17



Start Up:

When a new Directory server is added to the pool, it has to run through a series of
steps to initialise itself.

1. The first thing the server must do is find out who the Boss is by broadcasting
a request on the internal network. If there is a response, it should ask the
Boss for the latest files system tree and keep collecting updates as the data
comes in. It should then integrate the two. The server is now online.

2. If there is no response from the Boss, the server should try again for a maxi-
mum of three tries. If there is still no response, there is no Boss, so it should
start the election process. Once the Boss is selected, it should ask it for the
files system tree like in step 1.

3. It is assumed that Boss has been online for quite some time and has the
latest file system tree. If this is not true and the Boss is newly elected and
doesnot have the latest tree, then it will respond to the requests for the tree
with a wait. The other Directory servers will poll for the tree at intervals.
Until they get the tree, they will respond to Data server requests with an
error code.

The Boss server will now start to gather the file system tree through the following
steps.

1. It replies to requests from Data servers with an error code. It replies to
Directory server requests with await.

2. It then gets the entire list of Data servers from the Admin server.

3. It now connects to the first Data server and calls a function within it asking
it to refresh all its callbacks and to stop serving clients until it is done.

4. The Data server starts with the ’/’ directory and starts to ask the Directory
server for callback promises.

5. The Directory server acts as normal and accepts all the files as the freshest
(since he has nothing in his tree to contradict this position) and sets callback
promises as required.

18



6. It then connects to the next Data server and repeats the process from step 3
to 5. The process of connecting to the Data servers and having them refresh
their callbacks can take place concurrently.

7. If the files on the next Data server are fresher than the ones on the previous,
the Directory serverquesthe callback cancels for the rest and sets a callback
promise for the present one.

8. Once all the Data Servers are done, it sends off the qued callback cancels.
The reason the calls to cancel the callbacks were qued, was because there
is no guarantee than the freshest file in the tree while the file system tree
is being coallated, will be the very latest one by the time the process is
complete. The next Data server could hold a fresher copy. If we expire
callbacks everytime, we simply load up the network and the servers for no
real reason.

9. Along with the callback expiry messages, we also send a message to the
servers telling them to start serving clients.

Care should be taken to make sure the entire process works even if there is only
one server.

Note:

The reason this setup is a little complicated is to allow the transparent addition
and removal of directory servers. The directory servers are the weakest link in
the chain. If they fail, the entire network goes down hard. By allowing nodes to
transparently fail and be restarted, the chances of catastrophic failure are reduced
and the availability of the Directory system is enhanced. In addition, such a setup
allows effective load-balancing.

The Data Servers

The Data servers answer requests for data from clients and from other Data servers.

Setup:

The Data servers are the machines on which the files actually reside. Clients
connect to them and retrieve files from them. There is no guarantee that Data
servers will hold all the files or that they have the freshest files, but they can

19



retrieve those files as and when requested and they then cache them for future use.
The file timestamps and callbacks are maintained using a simple local database.
One Data server can not export more than one ZFS mount point. To have more
than one mount point on one physical machine, you would have to start another
completely independent instance of ZFS.

Clients are authenticated using standard Unix usernames and passwords. This file
can either be a part of the ZFS mount or the information may be stored on the
Admin server. Once authenticated, clients may browse those files and directories
for which they have permissions.

Data servers rely on the underlying file system for data integrity. It would be best
if they were run on some sort of journalling file system.

Data servers may be load balanced in anyway the administrators think best, for
example, behind a switch which maintains a per connection link between the
clients and the Data servers. All the Admin server knows is that machine name
server.somesite.com is a Data server.

The Client

The client is the machine which connects to the Data servers and requests files
from them.

The main focus of the client is to try and reduce network utilisation and depen-
dence as far as possible. Clients do this by caching as much as they can locally.
In order to make sure that the files they have in the local cache are fresh, they
are given callback promises by the Data servers. The Data servers expire these
callbacks as and when the Directory servers expire them, indicating a change in
the files contents or permissions.

When a client starts up, it immediately tries to contact a Data server (through the
Admin server). It then tries to acquire callbacks on the files it has in its cache. It
gets callbacks for those files that haven’t changed and is denied callbacks for those
that have. The client can then either request those files again25 or remove them
from its cache. This process is repeated if the client loses network connectivity,
since it is possible the status of the callbacks changed in the time it was offline.

As and when the user requests a file (by trying to read it using some application),
the client downloads the file from the Data server, gets a callback for it and stores

25This is something that it will only do if the file is in itshoard list

20



it in the cache. The file can then be used by the user. A strange situation may arise
where the file in the cache is newer than the file on the Data servers. This may
happen if the Data server to which the file had been uploaded crashed soon after,
before the file could propagate to other Data servers. In such a case, the client will
assume that the local copy is the freshest and continue as normal. The file will be
placed in the reintegration queeven if no changes are made to it.

When the file is closed, it is stored in the cache and added to the reintegration que
if its contents have been altered. Note that the largest file that a client can use is
limited by the size of the local data cache. If the file in question is larger than the
cache, then the openFile call on it will fail. This could be a problem if the client
is running on a platform with resource constraints (e.g. a PDA). One solution,
which is a bit of a hack, is to mount an NFS directory and use that as the cache.
This of course means the user will not be able to derive all the benefits of the
ZFS system, like disconnected operations and the faster speeds that come from
accessing local resources, however, the other benefits, like scalability, security,
locational independence, ease of administration etc. can still be enjoyed.

A local cache which is full will not represent a problem, because files which have
not been accessed for some time will be removed to make room for new files.

If the computer is connected to the network, the client will attempt to upload the
file to the server using a protocol based on the rsync algorithm. Multiple saves of
the file will be represented by only one entry in the que. If the computer is not
connected to the network, reintegration will be postponed until such time as it is.
The que data is stored on permanent storage to guard against data loss.

In order to conserve bandwidth, an rsync type protocol is used both when upload-
ing and downloading files from the data server. In addition, files are compressed
if they will benefit from it.

All data streams to and from the Data servers are encrypted. In addition, the files
stored on the local disk can also be encrypted. The former cannot be turned off,
however, the encryption of locally stored data can be switched off.

Another job of the client, is tohoard data. There are some files which are very
important and the user would like a fresh copy of these files to be maintained in
the cache at all times. They are not allowed to be overwritten either. The user
will use some user-friendly software to inform the client about the files he wishes
to hoard. In addition, another application will allow the user to monitor a session
and figure out which files have been accessed by the user. This information can
then be used to build up the hoard list.

21



The client itself is made up of two different, but complementary components.
There is the user level code (Phobos) which is written in portable C and carries out
the bulk of the activities. The kernel level component (Deimos) is specific to the
OS kernel and seamlessly integrates the user level component into the system26.
The reason for splitting up the software into two is to increase portability.

Minimum requirements.

Possible Problems

1. Information may be stored on only one server. If that goes down, the user
may lose that data. The situation can be detected if the client attempts to
re-read the file while using another Data server. The file will either be inac-
cessible (because the Data server which held it is gone) or an older version
may be found on the network. The client in this case assumes that the file in
its cache is the freshest and passes the user a handle to it. The file is placed
in the reintegration que even of no changes are made to it. However, if the
file has been deleted from the cache, there is no way to retrieve it.

Security

Authentication

Authenticaition will be carried out using SSL and Certificates for the servers and
username/passwords over an encrypted SSL link for the clients. Clients are al-
lowed three tries and if they can’t authenticate by then, the connection is closed.
If there are a lot of failed attempts from a single IP, it is automatically banned.

Encryption

Encryption will be carried out using SSL and the various protocols it supports.
The SSL connection is computationally expensive to set up and so clients will

26Obeying tradition, the two parts of the client system are named after heavenly bodies.

22



be required tokeep-alivethe connection for as long a they are connected. If a
client attempts to make a new SSL connection for each request, it will be banned.
This is to prevent a DOS27 attack where the client can tie up the server by forcing
to it continiously make new (and expensive) connections. In addtion, certain IP
addresses can be banned as well.

SSL sessions can be maintained across connections. One session may be used
over several connections sequentially or simultaneosly.

Possible Attacks

< <FIXME> >

Additional Services Required

Network Time Server running on the Admin server (or elsewhere) for syncroniza-
tion.

A Certificate server running on the Admin server (or elsewhere) for authentication.

< <FIXME> >

Network Setup

100MBps/GigaBit Ethernet bus network for the Directory servers.

Software/Hardware Load balancer before the Directory servers.

< <FIXME> >
27Denial Of Service.

23



The ZFS API

The Admin Server

Exposed

getDataServers()

authenticate(username, password)

Used

The Directory Server

Exposed

getServersForFile(filenamewithpath)

setFreshestFile(filenamewithpath, timestamp)

authenticate(username,password)

expireDataServersList()

getFileSysTree()

whoIsBoss()

Used

The Data Servers

Exposed

readFile(filenamewithpath)

writeFile(filenamewithpath)

writeFileBlocks(filenamewithpath, blocksize, checksums)

openFile(filenamewithpath)

24



closeFile(filenamewithpath)

deleteFile(filenamewithpath)

renameFile(filenamewithpath, newfilenamewithpath)

linkFile(???)

symLinkFile(???)

makeDir(dirnamewithpath)

removeDir(dirnamewithpath)

setFileLock(filenamewithpath)

releaseFileLock(filenamewithpath)

expireAllCallbacks()

expireCallback(filenamewithpath)

setCallback(filenamewithpath, timestamp)

setBulkCallback(filenamewithpath[], timestamp[])

getLoad()

authenticate(username, password)

Used

The Client

Exposed

expireCallback(flenamewithpath)

read(flenamewithpath, offset, size)

Used

25


